Two Assertions made by Ramanujan (Corrigenda)

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Exams Taken by Ramanujan in India

On Thursday and Friday, December 3 and 4, of 1903, Srinivasa Ramanujan, who was to become the greatest Indian mathematician in his country’s history, sat for the Matriculation Examination of Madras University. From documents recently found in the Tamil Nadu Archives, we have learned that Ramanujan obtained a Second Class place, permitting him to enter the Government College of Kumbakonam in the...

متن کامل

Corrigenda/Erratum

1. Nesselmann C, Ma N, Bieback K, Wagner W, Ho A, Konttinen YT, Zhang H, Hinescu ME, Steinhoff G. Mesenchymal stem cells and cardiac repair J. Cell. Mol. Med. Vol 12, No 5B, 2008 pp. 1795–1810. 2. Roodveldt C, Christodoulou J, Dobson CM. Immunological features of (alpha sign)-synuclein in Parkinson’s disease J. Cell. Mol. Med. Vol 12, No 5B, 2008 pp. 1820–1829. Corrigenda/Erratum J. Cell. Mol. ...

متن کامل

Transformational Software Evolution by Assertions

This paper explores the use of software transformations as a formal foundation for software evolution. More precisely, we express software transformations in terms of assertions (preconditions, postconditions and invariants) on top of the formalism of graph rewriting. This allows us to tackle scalability issues in a straightforward way. Useful applications include: detecting syntactic merge con...

متن کامل

Doppler Spectrum Estimation by Ramanujan Fourier Transforms

The Doppler spectrum estimation of a weather radar signal in a classic way can be made by two methods, temporal one based in the autocorrelation of the successful signals, whereas the other one uses the estimation of the power spectral density PSD by using Fourier transforms. We introduces a new tool of signal processing based on Ramanujan sums cq(n), adapted to the analysis of arithmetical seq...

متن کامل

An asymptotic expansion inspired by Ramanujan yRichard

Corollary 2, Entry 9, Chapter 4 of Ramanujan's rst notebook claims that 1 X k=1 (?1) k?1 nk x k k! n ln x + as x ! 1. This is known to be correct for the case n = 1, but incorrect for n 3. We show that the result is correct for n = 2. We also consider the order of the error term, and discuss a diierent, correct generalisation of the case n = 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the London Mathematical Society

سال: 1929

ISSN: 0024-6107,1469-7750

DOI: 10.1112/jlms/s1-4.13.32-s